Abstract
Epilepsy is a chronic neurological disease characterized by a large electrical explosion that is excessive and uncontrolled, as defined by the world health organization. It is an anomaly that affects people of all ages. An electroencephalogram (EEG) of the brain activity is a widely known method designed as a reference dedicated to study epileptic seizures and to record the changes in brain electrical activity. Therefore, the prediction and early detection of epilepsy is necessary to provide timely preventive interventions that allow patients to be relieved from the harmful consequences of epileptic seizures. Despite decades of research, the prediction of these seizures with accuracy remains an unresolved problem. In this article, we have proposed five deep learning models on intracranial electroencephalogram (iEEG) datasets with the aim of automatically predicting epileptic seizures. The proposed models are based on the Convolutional Neural Network (CNN) model, the fusion of the two CNNs (2-CNN), the fusion of the three CNNs (3-CNN), the fusion of the four CNNs (4-CNN), and transfer learning with ResNet50. The experimental results show that our proposed methods based on 3-CNN and 4-CNN gave the best values. They both achieve an accuracy value of 95%. Finally, our proposed methods are compared with previous studies, which confirm that seizure prediction performance was significantly improved.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献