Pedestrian Trajectory Prediction Based on Motion Pattern De-Perturbation Strategy

Author:

Deng Yingjian1,Zhang Li2ORCID,Chen Jie13,Deng Yu1,Huang Zhixiang1ORCID,Li Yingsong1ORCID,Cao Yice1,Wu Zhongcheng4,Zhang Jun4ORCID

Affiliation:

1. The Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China

2. School of Integrated Circuits, Anhui University, Hefei 230601, China

3. The 38th Research Institute of China Electronics Technology Group Corporation, Hefei 230601, China

4. The Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 231283, China

Abstract

Pedestrian trajectory prediction is extremely challenging due to the complex social attributes of pedestrians. Introducing latent vectors to model trajectory multimodality has become the latest mainstream solution idea. However, previous approaches have overlooked the effects of redundancy that arise from the introduction of latent vectors. Additionally, they often fail to consider the inherent interference of pedestrians with no trajectory history during model training. This results in the model’s inability to fully utilize the training data. Therefore, we propose a two-stage motion pattern de-perturbation strategy, which is a plug-and-play approach that introduces optimization features to model the redundancy effect caused by latent vectors, which helps to eliminate the redundancy effects in the trajectory prediction phase. We also propose loss masks to reduce the interference of invalid data during training to accurately model pedestrian motion patterns with strong physical interpretability. Our comparative experiments on the publicly available ETH and UCY pedestrian trajectory datasets, as well as the Stanford UAV dataset, show that our optimization strategy achieves better pedestrian trajectory prediction accuracies than a range of state-of-the-art baseline models; in particular, our optimization strategy effectively absorbs the training data to assist the baseline models in achieving optimal modeling accuracy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Research and Development Plan (Industry) Project of Yancheng

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3