Effects of Battery Energy Storage Systems on the Frequency Stability of Weak Grids with a High-Share of Grid-Connected Converters

Author:

Paiva Pedro1,Castro Rui2ORCID

Affiliation:

1. Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal

2. INESC-ID/IST, University of Lisbon, 1000-029 Lisboa, Portugal

Abstract

To achieve an energy sector independent from fossil fuels, a significant increase in the penetration of variable renewable energy sources, such as solar and wind power, is imperative. However, these sources lack the inertia provided by conventional thermo-electric power stations, which is essential for maintaining grid frequency stability. In this study, a grid resembling Madeira Island’s power generation mix was modeled using the Matlab/Simulink platform. The model included solar, wind, hydro, and thermo-electric generation to accurately represent the energy landscape of Madeira Island. Three scenarios were examined: one reflecting the current power generation on Madeira Island, a future scenario with a substantial rise in the percentage of photovoltaic (PV) generation, and the same future scenario but incorporating a battery energy storage system (BESS). Various analyses were conducted to assess the impact on frequency stability during a ground fault and rapid load/generation changes. In the future scenario without a BESS, the thermoelectric power plant generator desynchronized, leading to system collapse in several simulations. However, with the addition of a BESS, a significant improvement in frequency stability was observed. The thermoelectric power plant generator could return to a steady state after each disturbance. Furthermore, both the maximum frequency deviation and the absolute value of the Rate of Change of Frequency (ROCOF) were reduced, indicating enhanced system performance and stability.

Funder

FCT, Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3