Color Mura Defect Detection Method Based on Channel Contrast Sensitivity Function Filtering

Author:

Wang Zhixi12,Chen Huaixin1,Xie Wenqiang1,Wang Haoyu1

Affiliation:

1. Department of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China

2. Novel Product R & D Department, Truly Opto-Electronics Co., Ltd., Shanwei 516600, China

Abstract

To address the issue of low detection accuracy caused by low contrast in color Mura defects, this paper proposes a color Mura defect detection method based on channel contrast sensitivity function (CSF) filtering. The RGB image of the captured liquid crystal display (LCD) display is converted to the Lab color space, and the Weber contrast feature maps of the Lab channel images are calculated. Frequency domain filtering is performed using the CSF to obtain visually sensitive Lab feature maps. Color Mura defect detection is achieved by employing adaptive segmentation thresholds based on the fused feature maps of the L channel and ab channels. The color Mura evaluation criterion is utilized to quantitatively assess the defect detection results. Experimental results demonstrate that the proposed method achieves an accuracy rate of 87% in color Mura defect detection, outperforming existing mainstream detection methods.

Funder

“Yang Fan” major project in Guangdong Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated inspection approach for OCA particles in multi-layered cover glass of display module assembly;Measurement Science and Technology;2024-08-20

2. Calibration Methods for High-Contrast Automotive Clusters;2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST);2024-07-01

3. Detection method of organic light-emitting diodes based on small sample deep learning;PLOS ONE;2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3