Joint Packet Length and Power Optimization for Covert Short-Packet D2D Communications

Author:

Zhang Xiaolong1,Liu Jie1,Huang Yuzhen2

Affiliation:

1. College of Communication Engineering, Army Engineering University of PLA, Nanjing 210007, China

2. National Innovation Institute of Defense Technology, Academyof Military Sciences of PLA, Beijing 100091, China

Abstract

This paper proposes a joint optimization mechanism for packet length and power in the scenario of covert short packet D2D communication, so as to effectively improve the communication performance between D2D pairs subject to the covert constraint. Specifically, we construct a short-packet D2D communication model assisted by covert communication, and further propose the notion of effective covert throughput (ECT) to quantitatively characterize the trade-off between the covertness and reliability of IoT state monitoring information transmission. Secondly, in the constructed communication scenario, we analyze the detection error probability of the warden and clarify that the existing equal power transmission of pilot and data signals can minimize the detection performance of the warden. However, this strategy is achieved by compromising the transmission performance of the system, which means that the ECT of D2D pair may not be optimal. Thirdly, we aim to maximize the ECT of D2D pair and construct a joint optimization problem for pilot transmission power, data transmission power, and packet length. Furthermore, a joint optimization algorithm based on the 2D search is adopted to obtain the optimal solution of the established optimization problem. Simulation results demonstrated that the transmission performance of the joint optimization algorithm is better than that of the scheme of the equal power scheme on the premise of ensuring the covertness.

Funder

National Science Fund for Excellent Young Scholars

Jiangsu Provincial Natural Science Fundation for Excellent Young Scholars

National Natural Science Foundation of China

Beijing Nova Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3