EA-ConvNeXt: An Approach to Script Identification in Natural Scenes Based on Edge Flow and Coordinate Attention

Author:

Zhang Zhiyun1,Eli Elham1,Mamat Hornisa1,Aysa Alimjan12ORCID,Ubul Kurban12ORCID

Affiliation:

1. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

2. Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China

Abstract

In multilingual scene text understanding, script identification is an important prerequisite step for text image recognition. Due to the complex background of text images in natural scenes, severe noise, and common symbols or similar layouts in different language families, the problem of script identification has not been solved. This paper proposes a new script identification method based on ConvNext improvement, namely EA-ConvNext. Firstly, the method of generating an edge flow map from the original image is proposed, which increases the number of scripts and reduces background noise. Then, based on the feature information extracted by the convolutional neural network ConvNeXt, a coordinate attention module is proposed to enhance the description of spatial position feature information in the vertical direction. The public dataset SIW-13 has been expanded, and the Uyghur script image dataset has been added, named SIW-14. The improved method achieved identification rates of 97.3%, 93.5%, and 92.4% on public script identification datasets CVSI-2015, MLe2e, and SIW-13, respectively, and 92.0% on the expanded dataset SIW-14, verifying the superiority of this method.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference39 articles.

1. Banu, J.F., Muneeshwari, P., Raja, K., Suresh, S., Latchoumi, T.P., and Deepan, S. (2022, January 27–28). Ontology based image retrieval by utilizing model annotations and content. Proceedings of the 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India.

2. Beyond english-centric multilingual machine translation;Fan;J. Mach. Learn. Res.,2021

3. Sumbul, G., Charfuelan, M., Demir, B., and Markl, V. (August, January 28). Bigearthnet: A large-scale benchmark archive for remote sensing image understanding. Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan.

4. Islam, N., Islam, Z., and Noor, N. (2017). A survey on optical character recognition system. arXiv.

5. Qiao, Z., Zhou, Y., Yang, D., Zhou, Y., and Wang, W. (2020, January 13–19). Seed: Semantics enhanced encoder-decoder framework for scene text recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3