Abstract
After decades of research, X-band marine radars have been broadly used for wind measurement. For retrieving the wind direction based on the wind-induced streaks, a lot of effort has been expended on three celebrated approaches—the local gradient method (LGM), the adaptive reduced method (ARM), and the energy spectrum method (ESM). This paper presents a scientific study of these methods. The contrast of retrieving the real measured marine radar images and vane measured results is evaluated, in perspective of the error statistics and algorithm operation efficiency. Interference factors, such as the historical information of the measured area, reference wind speed, and sea condition showing in the monitoring equipment are also concerned. The tentative results showed that LGM is robust, which can be implemented in most radar images, because it allows for a lower selection of requirements compared with the other two methods. For ARM, the better retrieval performance is a tradeoff with extra computation, which is expensive. ESM is superior to the other two algorithms in terms of accuracy and computation load; however, this algorithm is sensitive in rain-contaminated radar images, meaning it is a good choice for data post-processing in the lab.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献