Abstract
Multi-object tracking (MOT) is a significant and widespread research field in image processing and computer vision. The goal of the MOT task consists in predicting the complete tracklets of multiple objects in a video sequence. There are usually many challenges that degrade the performance of the algorithm in the tracking process, such as occlusion and similar objects. However, the existing MOT algorithms based on the tracking-by-detection paradigm struggle to accurately predict the location of the objects that they fail to track in complex scenes, leading to tracking performance decay, such as an increase in the number of ID switches and tracking drifts. To tackle those difficulties, in this study, we design a motion prediction strategy for predicting the location of occluded objects. Since the occluded objects may be legible in earlier frames, we utilize the speed and location of the objects in the past frames to predict the possible location of the occluded objects. In addition, to improve the tracking speed and further enhance the tracking robustness, we utilize efficient YOLOv4-tiny to produce the detections in the proposed algorithm. By using YOLOv4-tiny, the tracking speed of our proposed method improved significantly. The experimental results on two widely used public datasets show that our proposed approach has obvious advantages in tracking accuracy and speed compared with other comparison algorithms. Compared to the Deep SORT baseline, our proposed method has a significant improvement in tracking performance.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献