Abstract
This work presents a predictive control strategy for a four degrees of freedom (DOF) half-car model in the presence of active aerodynamic surfaces. The proposed control strategy consists of two parts: the feedback control deals with the tracking error while the feedforward control handles the anticipated road disturbance and ensures the desired maneuvering. The desired roll and pitch angles are obtained by using disturbance, vehicle speed and radius of curvature. The proposed approach helps the vehicle to achieve better ride comfort by suppressing the amplitude of vibrations occurring in the vertical motion of the vehicle body, and enhances the road-holding capability by overcoming the amplitude of vibrations in tyre deflection. The control strategy also cancels out the hypothetical forces acting on the vehicle body to help the vehicle to track the desired attitude motion without compromising the ride comfort and road-holding capability. The simulations results show that the proposed control strategy successfully reduces the root mean square error (RMSE) values of sprung mass acceleration as well as tyre deflection.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献