On the Performance of Cloud Services and Databases for Industrial IoT Scalable Applications

Author:

Ferrari PaoloORCID,Sisinni EmilianoORCID,Depari Alessandro,Flammini Alessandra,Rinaldi StefanoORCID,Bellagente PaoloORCID,Pasetti MarcoORCID

Abstract

In the Industry 4.0 the communication infrastructure is derived from the Internet of Things (IoT), and it is called Industrial IoT or IIoT. Smart objects deployed on the field collect a large amount of data which is stored and processed in the Cloud to create innovative services. However, differently from most of the consumer applications, the industrial scenario is generally constrained by time-related requirements and its needs for real-time behavior (i.e., bounded and possibly short delays). Unfortunately, timeliness is generally ignored by traditional service provider, and the Cloud is treated as a black box. For instance, Cloud databases (generally seen as “Database as a service”—DBaaS) have unknown or hard-to-compare impact on applications. The novelty of this work is to provide an experimental measurement methodology based on an abstract view of IIoT applications, in order to define some easy-to-evaluate metrics focused on DBaaS latency (no matter the actual implementation details are). In particular, the focus is on the impact of DBaaS on the overall communication delays in a typical IIoT scalable context (i.e., from the field to the Cloud and the way back). In order to show the effectiveness of the proposed approach, a real use case is discussed (it is a predictive maintenance application with a Siemens S7 industrial controller transmitting system health status information to a Cloudant DB inside the IBM Bluemix platform). Experiments carried on in this use case provide useful insights about the DBaaS performance: evaluation of delays, effects of involved number of devices (scalability and complexity), constraints of the architecture, and clear information for comparing with other implementations and for optimizing configuration. In other words, the proposed evaluation strategy helps in finding out the peculiarities of Cloud Database service implementations.

Funder

Lombardy region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting Accurate Ultra Wide Band Time Synchronization at the Application Level in Embedded Systems;2023 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS);2023-09-18

2. Comparison Analysis of Data Sending Performance Using The Cayenne and ThingSpeak IoT Platform;2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS);2022-11-16

3. Database Modeling for the Cloud: A Systematic Review of the Literature;2022 11th International Conference On Software Process Improvement (CIMPS);2022-10-19

4. An Experimental Characterization of Time Synchronization in Multiple UWB Location Cells;2022 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS);2022-10-02

5. Improving classification capability of industrial-grade ATE by means of cloud architecture;2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3