A Distributed Edge-Based Scheduling Technique with Low-Latency and High-Bandwidth for Existing Driver Profiling Algorithms

Author:

Pirahandeh MehdiORCID,Ullah Shan,Kim Deok-HwanORCID

Abstract

The gradual increase in latency-sensitive, real-time applications for embedded systems encourages users to share sensor data simultaneously. Streamed sensor data have deficient performance. In this paper, we propose a new edge-based scheduling method with high-bandwidth for decreasing driver-profiling latency. The proposed multi-level memory scheduling method places data in a key-value storage, flushes sensor data when the edge memory is full, and reduces the number of I/O operations, network latency, and the number of REST API calls in the edge cloud. As a result, the proposed method provides significant read/write performance enhancement for real-time embedded systems. In fact, the proposed application improves the number of requests per second by 3.5, 5, and 4 times, respectively, compared with existing light-weight FCN-LSTM, FCN-LSTM, and DeepConvRNN Attention solutions. The proposed application also improves the bandwidth by 5.89, 5.58, and 4.16 times respectively, compared with existing light-weight FCN-LSTM, FCN-LSTM, and DeepConvRNN Attention solutions.

Funder

National Research Foundation of Korea

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

1. A study of individual characteristics of driving behavior based on hidden markov model;Zhang;Sens. Transducers,2014

2. Driver Modeling Based on Driving Behavior and Its Evaluation in Driver Identification

3. Driving Behavior Analysis through CAN Bus Data in an Uncontrolled Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3