Low-Power On-Chip Implementation of Enhanced SVM Algorithm for Sensors Fusion-Based Activity Classification in Lightweighted Edge Devices

Author:

Chang JuneseoORCID,Kang Myeongjin,Park DaejinORCID

Abstract

Smart homes assist users by providing convenient services from activity classification with the help of machine learning (ML) technology. However, most of the conventional high-performance ML algorithms require relatively high power consumption and memory usage due to their complex structure. Moreover, previous studies on lightweight ML/DL models for human activity classification still require relatively high resources for extremely resource-limited embedded systems; thus, they are inapplicable for smart homes’ embedded system environments. Therefore, in this study, we propose a low-power, memory-efficient, high-speed ML algorithm for smart home activity data classification suitable for an extremely resource-constrained environment. We propose a method for comprehending smart home activity data as image data, hence using the MNIST dataset as a substitute for real-world activity data. The proposed ML algorithm consists of three parts: data preprocessing, training, and classification. In data preprocessing, training data of the same label are grouped into further detailed clusters. The training process generates hyperplanes by accumulating and thresholding from each cluster of preprocessed data. Finally, the classification process classifies input data by calculating the similarity between the input data and each hyperplane using the bitwise-operation-based error function. We verified our algorithm on ‘Raspberry Pi 3’ and ‘STM32 Discovery board’ embedded systems by loading trained hyperplanes and performing classification on 1000 training data. Compared to a linear support vector machine implemented from Tensorflow Lite, the proposed algorithm improved memory usage to 15.41%, power consumption to 41.7%, performance up to 50.4%, and power per accuracy to 39.2%. Moreover, compared to a convolutional neural network model, the proposed model improved memory usage to 15.41%, power consumption to 61.17%, performance to 57.6%, and power per accuracy to 55.4%.

Funder

BK21 FOUR project funded by the Ministry of Education

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference42 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3