A Flexible Operation and Sizing of Battery Energy Storage System Based on Butterfly Optimization Algorithm

Author:

Alawode Basit OlakunleORCID,Salman Umar TaiwoORCID,Khalid MuhammadORCID

Abstract

There is a surge in the total energy demand of the world due to the increase in the world’s population and the ever-increasing human dependence on technology. Conventional non-renewable energy sources still contribute a larger amount to the total energy production. Due to their greenhouse gas emissions and environmental pollution, the substitution of these sources with renewable energy sources (RES) is desired. However, RES, such as wind energy, are uncertain, intermittent, and unpredictable. Hence, there is a need to optimize their usage when they are available. This can be carried out through a flexible operation of a microgrid system with the power grid to gradually reduce the contribution of the conventional sources in the power system using energy storage systems (ESS). To integrate the RES in a cost-effective approach, the ESS must be optimally sized and operated within its safe limitations. This study, therefore, presents a flexible method for the optimal sizing and operation of battery ESS (BESS) in a wind-penetrated microgrid system using the butterfly optimization (BO) algorithm. The BO algorithm was utilized for its simple and fast implementation and for its ability to obtain global optimization parameters. In the formulation of the optimization problem, the study considers the depth of discharge and life-cycle of the BESS. Simulation results for three different scenarios were studied, analyzed, and compared. The resulting optimized BESS connected scenario yielded the most cost-effective strategy among all scenarios considered.

Funder

King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3