Bidding Strategy of Two-Layer Optimization Model for Electricity Market Considering Renewable Energy Based on Deep Reinforcement Learning

Author:

Ji Xiu,Li Cong,Li Dexin,Qi Chenglong

Abstract

In the future, the large-scale participation of renewable energy in electricity market bidding is an inevitable trend. In order to describe the Nash equilibrium effect and market power between renewable energy and traditional power generators in the tacit competition in the electricity market, a bidding strategy based on deep reinforcement learning is proposed. The strategy is divided into two layers; the inner layer is the electricity market clearing model, and the outer layer is the deep reinforcement learning optimization algorithm. Taking the equilibrium supply function as the clearing model of the electricity market, considering the green certificate trading mechanism and the carbon emission mechanism, and taking the maximization of social welfare as the objective function, the optimal bidding on the best electricity price is solved. Finally, the calculation examples of the 3-node system and the 30-node system show that compared with other algorithms, more stable convergence results can be obtained, the Nash equilibrium in game theory can be reached, social welfare can be maximized, renewable energy has more market power in the market. The market efficiency evaluation index is introduced to analyze the market efficiency of the two case systems. The final result is one of great significance and value to the reasonable electricity price declaration, the optimization of market resources, and the policy orientation of the electricity market with renewable energy.

Funder

Jilin Province Young and Middle-aged Science and Technology Innovation Excellent Team Project, State Grid Jilin Electric Power Co., Ltd. scientific and technological research project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3