DFSGraph: Data Flow Semantic Model for Intermediate Representation Programs Based on Graph Network

Author:

Tang KeORCID,Shan Zheng,Zhang ChunyanORCID,Xu Lianqiu,Qiao Meng,Liu FudongORCID

Abstract

With the improvement of software copyright protection awareness, code obfuscation technology plays a crucial role in protecting key code segments. As the obfuscation technology becomes more and more complex and diverse, it has spawned a large number of malware variants, which make it easy to evade the detection of anti-virus software. Malicious code detection mainly depends on binary code similarity analysis. However, the existing software analysis technologies are difficult to deal with the growing complex obfuscation technologies. To solve this problem, this paper proposes a new obfuscation-resilient program analysis method, which is based on the data flow transformation relationship of the intermediate representation and the graph network model. In our approach, we first construct the data transformation graph based on LLVM IR. Then, we design a novel intermediate language representation model based on graph networks, named DFSGraph, to learn the data flow semantics from DTG. DFSGraph can detect the similarity of obfuscated code by extracting the semantic information of program data flow without deobfuscation. Extensive experiments prove that our approach is more accurate than existing deobfuscation tools when searching for similar functions from obfuscated code.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

1. DoSE

2. VMHunt

3. Search-Based Local Black-Box Deobfuscation: Understand, Improve and Mitigate

4. Syntia: Synthesizing the semantics of obfuscated code;Blazytko;Proceedings of the 26th USENIX Security Symposium,2017

5. Input-Output Example-Guided Data Deobfuscation on Binary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3