Implementation of Control Flow Checking—A New Perspective Adopting Model-Based Software Design

Author:

Amel Solouki MohammadrezaORCID,Sini JacopoORCID,Violante MassimoORCID

Abstract

A common requirement of embedded software in charge of safety tasks is to guarantee the identification of random hardware failures (RHFs) that can affect digital components. RHFs are unavoidable. For this reason, the functional safety standard devoted to automotive applications requires embedded software designs able to detect and eventually mitigate them. For this purpose, various software-based error detection techniques have been proposed over the years, focusing mainly on detecting control flow errors. Many control flow checking (CFC) algorithms have been proposed to accomplish this task. However, applying these approaches can be difficult because their respective literature gives little guidance on their practical implementation in high-level programming languages, and they have to be implemented in low-level code, e.g., assembly. Moreover, the current trend in the automotive industry is to adopt the so-called model-based software design approach, where an executable algorithm model is automatically translated into C or C++ source code. This paper presents two novelties: firstly, the compliance of the experimental data on the capabilities of control flow checking (CFC) algorithms with the ISO 26262 automotive functional safety standard; secondly, by implementing the CFC algorithm in the application behavioral model, the off-the-shelves code generator seamlessly produces the hardened source code of the application. The assessment was performed using a novel fault injection environment targeting a RISC-V (RV32I) microcontroller.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference27 articles.

1. Resourceful systems for fault tolerance, reliability, and safety

2. Concurrent error detection using watchdog processors-a survey

3. DIVA: A reliable substrate for deep submicron microarchitecture design;Austin;Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture,1999

4. System level approaches for mitigation of long duration transient faults in future technologies;Lisboa;Proceedings of the 12th IEEE European Test Symposium (ETS’07),2007

5. Fault-Tolerant Design;Dubrova,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Approach to Selectively Control Flow Checking Methods Compliant with ISO 26262;Proceedings of the 20th ACM International Conference on Computing Frontiers;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3