Dynamic Basic Activity Sequence Matching Method in Abnormal Driving Pattern Detection Using Smartphone Sensors

Author:

Nguyen Thi-HauORCID,Lu Dang-NhacORCID,Nguyen Duc-Nhan,Nguyen Ha-Nam

Abstract

In this work, we present a novel method, namely dynamic basic activity sequence matching (DAS), a combination of machine learning methods and flexible threshold based methods for distinguishing normal and abnormal driving patterns. Indeed, DAS relies on the activity detection module (ADM) presented in our previous work to analyze each driving pattern as a sequence of basic activities—stopping (S), going straight (G), turning left (L), and turning right (R). In fact, the threshold value and other parameters like the duration of long and short activities are iteratively induced from the collected dataset. Hence, DAS is flexible and independent of driving contexts such as vehicle modes and road conditions. Experimental results, on the dataset collected from numerous motorcyclists, show the outperformance of our proposed method against dynamic time warping and the two popular machine learning methods—random forest and neural network—in distinguishing the normal and abnormal driving patterns. Moreover, we propose an efficient framework composing of two phases: in the first phase, the normal and abnormal driving patterns are distinguished by relying on DAS. In the second phase, the detected abnormal patterns are further classified into various specific abnormal driving patterns—weaving, sudden braking, etc. This fusion framework again achieves the highest overall accuracy of 97.94%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. Global Status Report on Road Safety 2018 https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/

2. Context-Aware Driver Behavior Detection System in Intelligent Transportation Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3