Sizing CMOS Amplifiers by PSO and MOL to Improve DC Operating Point Conditions

Author:

Tlelo-Cuautle EstebanORCID,Valencia-Ponce Martín Alejandro,de la Fraga Luis GerardoORCID

Abstract

The sizes of the metal-oxide-semiconductor (MOS) transistors in an operational amplifier must guarantee strong direct current operating point (DCOP) conditions. This paper shows the usefulness of two population-based optimization algorithms to size transistors, namely—particle swarm optimization (PSO) and many optimizing liaisons (MOL). Both optimization algorithms link the circuit simulator SPICE to measure electrical characteristics. However, SPICE provides an output-file indicating that a transistor is in strong inversion but the DCOP can be in the limit, and it can switch to a different condition. In this manner, we highlight the application of PSO and MOL to size operational transconductance amplifiers (OTAs), which DCOP conditions are improved by the introduction of a procedure that handles constraints to ensure that the transistors are in the appropriate DCOP. The Miller and RFC-OTA are the cases of study, and their sizing is performed using UMC 180 nm CMOS technology. In both OTAs, the objective function is the maximization of the gain-bandwidth product under the main constraint of guaranteeing DCOPs to improve two figures of merit and to provide robustness to Monte Carlo simulations and PVT variations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analog circuit sizing based on Evolutionary Algorithms and deep learning;Expert Systems with Applications;2024-03

2. ANN-Powered Reinforcement Learning-Based Analog Circuit Optimization;2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS);2023-12-04

3. Optimization of Sliding Mode Control for Doubly Fed Induction Generator Systems Using Particle Swarm and Grey Wolf Algorithms;Electric Power Components and Systems;2023-11-16

4. Single-Stage CMOS Operational Transconductance Amplifiers (OTAs): A Design Tutorial;Electronics;2023-09-10

5. 1-V 87-nW CMOS Rail-to-Rail Amplifier Using an Optimization methodology;2022 International Conference on Microelectronics (ICM);2022-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3