Requirements for Energy-Harvesting-Driven Edge Devices Using Task-Offloading Approaches

Author:

Ben Ammar MeriamORCID,Ben Dhaou ImedORCID,El Houssaini DhouhaORCID,Sahnoun Salwa,Fakhfakh Ahmed,Kanoun OlfaORCID

Abstract

Energy limitations remain a key concern in the development of Internet of Medical Things (IoMT) devices since most of them have limited energy sources, mainly from batteries. Therefore, providing a sustainable and autonomous power supply is essential as it allows continuous energy sensing, flexible positioning, less human intervention, and easy maintenance. In the last few years, extensive investigations have been conducted to develop energy-autonomous systems for the IoMT by implementing energy-harvesting (EH) technologies as a feasible and economically practical alternative to batteries. To this end, various EH-solutions have been developed for wearables to enhance power extraction efficiency, such as integrating resonant energy extraction circuits such as SSHI, S-SSHI, and P-SSHI connected to common energy-storage units to maintain a stable output for charge loads. These circuits enable an increase in the harvested power by 174% compared to the SEH circuit. Although IoMT devices are becoming increasingly powerful and more affordable, some tasks, such as machine-learning algorithms, still require intensive computational resources, leading to higher energy consumption. Offloading computing-intensive tasks from resource-limited user devices to resource-rich fog or cloud layers can effectively address these issues and manage energy consumption. Reinforcement learning, in particular, employs the Q-algorithm, which is an efficient technique for hardware implementation, as well as offloading tasks from wearables to edge devices. For example, the lowest reported power consumption using FPGA technology is 37 mW. Furthermore, the communication cost from wearables to fog devices should not offset the energy savings gained from task migration. This paper provides a comprehensive review of joint energy-harvesting technologies and computation-offloading strategies for the IoMT. Moreover, power supply strategies for wearables, energy-storage techniques, and hardware implementation of the task migration were provided.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3