Abstract
Research on the lower limb exoskeleton for rehabilitation have developed rapidly to meet the need of the aging population. The rehabilitation exoskeleton system is a wearable man–machine integrated mechanical device. In recent years, the vigorous development of exoskeletal technology has brought new ideas to the rehabilitation and medical treatment of patients with motion dysfunction, which is expected to help such people complete their daily physiological activities or even reshape their motion function. The rehabilitation exoskeletons conduct assistance based on detecting intention, control algorithm, and high-performance actuators. In this paper, we review rehabilitation exoskeletons from the aspects of the overall design, driving unit, intention perception, compliant control, and efficiency validation. We discussed the complexity and coupling of the man–machine integration system, and we hope to provide a guideline when designing a rehabilitation exoskeleton system for the lower limbs of elderly and disabled patients.
Funder
Zhejiang Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献