Medical Image Classification with a Hybrid SSM Model Based on CNN and Transformer

Author:

Hu Can1ORCID,Cao Ning1ORCID,Zhou Han2ORCID,Guo Bin3ORCID

Affiliation:

1. School of Computer and Soft, Hohai University, Nanjing 211100, China

2. School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China

3. College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

Medical image classification, a pivotal task for diagnostic accuracy, poses unique challenges due to the intricate and variable nature of medical images compared to their natural counterparts. While Convolutional Neural Networks (CNNs) and Transformers are prevalent in this domain, each architecture has its drawbacks. CNNs, despite their strength in local feature extraction, fall short in capturing global context, whereas Transformers excel at global information but can overlook fine-grained details. The integration of CNNs and Transformers in a hybrid model aims to bridge this gap by enabling simultaneous local and global feature extraction. However, this approach remains constrained in its capacity to model long-range dependencies, thereby hindering the efficient extraction of distant features. To address these issues, we introduce the MambaConvT model, which employs a state-space approach. It begins by locally processing input features through multi-core convolution, enhancing the extraction of deep, discriminative local details. Next, depth-separable convolution with a 2D selective scanning module (SS2D) is employed to maintain a global receptive field and establish long-distance connections, capturing the fine-grained features. The model then combines hybrid features for comprehensive feature extraction, followed by global feature modeling to emphasize on global detail information and optimize feature representation. This paper conducts thorough performance experiments on different algorithms across four publicly available datasets and two private datasets. The results demonstrate that MambaConvT outperforms the latest classification algorithms in terms of accuracy, precision, recall, F1 score, and AUC value ratings, achieving superior performance in the precise classification of medical images.

Funder

Jiangsu Provincial Key Research and Development Program

Cao Ning

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3