Framework for the Machine Learning Based Wireless Sensing of the Electromagnetic Properties of Indoor Materials

Author:

Kocevska TeodoraORCID,Javornik TomažORCID,Švigelj AlešORCID,Hrovat AndrejORCID

Abstract

Available digital maps of indoor environments are limited to a description of the geometrical environment, despite there being an urgent need for more accurate information, particularly data about the electromagnetic (EM) properties of the materials used for walls. Such data would enable new possibilities in the design and optimization of wireless networks and the development of new radio services. In this paper, we introduce, formalize, and evaluate a framework for machine learning (ML) based wireless sensing of indoor surface materials in the form of EM properties. We apply the radio-environment (RE) signatures of the wireless link, which inherently contains environmental information due to the interaction of the radio waves with the environment. We specify the content of the RE signature suitable for surface-material classification as a set of multipath components given by the received power, delay, phase shift, and angle of arrival. The proposed framework applies an ML approach to construct a classification model using RE signatures labeled with the environmental information. The ML method exploits the data obtained from measurements or simulations. The performance of the framework in different scenarios is evaluated based on standard ML performance metrics, such as classification accuracy and F-score. The results of the elementary case prove that the proposed approach can be applied for the classification of the surface material for a plain environment, and can be further extended for the classification of wall materials in more complex indoor environments.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference84 articles.

1. Future Trends and Current State of Smart City Concepts: A Survey

2. Indoor Space: A New Notion of Space;Li,2008

3. On-Site Permittivity Estimation at 60 GHz Through Reflecting Surface Identification in the Point Cloud

4. Effects of Building Materials and Structures on Radiowave Propagation above about 100 MHz,2021

5. Indoor environment propagation review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3