Detection of Mental Stress through EEG Signal in Virtual Reality Environment

Author:

Kamińska DorotaORCID,Smółka KrzysztofORCID,Zwoliński GrzegorzORCID

Abstract

This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompanied by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation scenes were developed based on scenarios created for psychotherapy treatment utilizing bilateral stimulation, while the Stroop test worked as a stressor. The experiment was conducted on a group of 28 healthy adult volunteers (office workers), participating in a VR session. Subjects’ EEG signal was continuously monitored using the EMOTIV EPOC Flex wireless EEG head cap system. After the session, volunteers were asked to re-fill questionnaires regarding the current stress level and mood. Then, we classified the stress level using a convolutional neural network (CNN) and compared the classification performance with conventional machine learning algorithms. The best results were obtained considering all brain waves (96.42%) with a multilayer perceptron (MLP) and Support Vector Machine (SVM) classifiers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference96 articles.

1. Stress in Health and Disease;Selye,2013

2. Stress: Concepts, definition and history;Fink,2017

3. Stress: Symptoms, Causes and Effectshttps://www.helpguide.org/articles/stress/stress-symptoms-causes-and-effects.htm

4. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey

5. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3