Abstract
In this paper, lateral AlGaN/GaN Schottky barrier diodes are investigated in terms of anode construction and diode structure. An original GaN Schottky diode manufacturing-process flow was developed. A set of experiments was carried out to verify dependences between electrical parameters of the diode, such as reverse and forward currents, ON-state voltage, forward voltage and capacitance, anode-to-cathode distance, length of field plate, anode length, Schottky contact material, subanode recess depth, and epitaxial structure type. It was found that diodes of SiN/Al0.23Ga0.77N/GaN epi structure with Ni-based anodes demonstrated two orders of magnitude lower reverse currents than diodes with GaN/Al0.25Ga0.75N/GaN epitaxial structure. Diodes with Ni-based anodes demonstrated lower VON and higher IF compared with diodes with Pt-based anodes. As a result of these investigations, an optimal set of parameters was selected, providing the following electrical characteristics: VON = 0.6 (at IF = 1 mA/mm), forward voltage of the diode VF = 1.6 V (at IF = 100 mA/mm), maximum reverse voltage VR = 300 V, reverse leakage current IR = 0.04 μA/mm (at VR = −200 V), and total capacitance C = 3.6 pF/mm (at f = 1 MHz and 0 V DC bias). Obtained electrical characteristics of the lateral Schottky barrier diode demonstrate great potential for use in energy-efficient power applications, such as 5G multiband and multistandard wireless base stations.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献