Compact Wideband Coplanar Stripline-to-Microstrip Line Transition Using a Bended Structure on a Two-Layered Substrate
-
Published:2021-05-26
Issue:11
Volume:10
Page:1272
-
ISSN:2079-9292
-
Container-title:Electronics
-
language:en
-
Short-container-title:Electronics
Author:
Lee Gwan HuiORCID,
Mohyuddin Wahab,
Kumar SachinORCID,
Choi Hyun Chul,
Kim Kang Wook
Abstract
A design of a compact coplanar strip (CPS)-to-microstrip line (MSL) transition using a bended structure on a two-layered substrate is presented. The proposed transition consists of a CPS taper and a bended CPS-to-MSL transition on a two-layered substrate. The CPS taper is formed on the lower substrate with low permittivity (εr = 3.38), and the bended CPS-to-MSL transition is formed on the upper substrate with high permittivity (εr= 10.2). The proposed transition is designed with analytical formulas obtained by applying EM-based conformal mapping without parametric tuning trials. The conductor shape of the bended CPS-to-MSL transition is adjusted to form an optimal Klopfenstein impedance taper. The proposed CPS-to-MSL transition optimally connects between a high impedance CPS line (~160 Ω) and a 50 Ω MSL, which typically results in a long transition length for ultra-wideband performance. The implemented transition bended in a sinusoid shape on the two-layered substrate provides good performance from 2 GHz to 17 GHz with the maximum 2 dB insertion loss per transition, and the horizontal length of the bended transition is reduced to 42.9% of the straight transition length. This bended transition is developed for use in mm-wave balanced antenna/detector feeds but can be applied to a variety of wideband balanced circuit modules, where compact circuit size is critical.
Funder
the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献