Design of a High-Power Multilevel Sinusoidal Signal and High-Frequency Excitation Module Based on FPGA for HIFU Systems

Author:

Bui Ngoc ThangORCID,Nguyen Thi My Tien,Ataklti Gebremedhin Yonatan,Bui Quoc Cuong,Dinh Tran Thanh Nam,Phan Duc Tri,Park Sumin,Choi Jaeyeop,Vu Thi Thu Ha,Oh JunghwanORCID

Abstract

High-intensity focused ultrasound (HIFU) is a noninvasive therapy that uses focused ultrasound to treat a part of the tissue; high temperatures can damage tissues by heat. HIFU has many applications in the field of surgery and aesthetics and is used increasingly in everyday life. In this article, we discuss the mainboard design that controls the HIFU system with the ability to create a multistep sine wave compatible with many different applications. The signal used to trigger the transducer is a sinusoidal signal with a frequency adjustable from 0.1 to 3 MHz. In addition, the power supplied to the HIFU transducer is also controlled easily by the configuration parameters installed in the control circuit board. The proposed control and design method generates a voltage signal that doubles the supply voltage, thereby reducing the current on the MOSFET. The hardware design is optimized for a surface-mounted device-type MOSFET without the need for an external heat sink. In tests, we conducted a harmonious combination of two output signals to activate the same HIFU probe. The results showed that the energy transferred to the HIFU transducer increased by 1.5 times compared to a single channel. This means that the HIFU treatment time is reduced when using this method, with absolutely no changes in the system structure.

Funder

This research was supported by the Pukyong National University Development Project Research Fund (PhiNX program), 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3