1/f Additive Phase Noise Analysis for One-Port Injection-Locked Oscillators

Author:

Suh InwonORCID,Roblin PatrickORCID,Ko Youngseo

Abstract

The 1/f additive phase noise of one-port injection-locked oscillators is experimentally characterized and analyzed using a simple analytic model based on the generalized 1/f Kurokawa theory. To experimentally verify the prediction of the simple analytic model proposed, two negative-conductance transmission line pHEMT oscillators operating at 2.4828 GHz and 2.485 GHz were designed and fabricated. A new configuration for integrating an additive phase noise measurement system with a large signal network analyzer (LSNA) is introduced to jointly acquire both the noise and RF waveforms of the one-port injection-locked oscillator. The Kurokawa derivatives needed for the analytic expression were experimentally obtained using the LSNA measurements and optimized to accurately model the corner frequency. A good agreement between the predicted and experimental results was obtained for both the injection-locked and free-running oscillators. In contrast to phase noise measurements of the free-running oscillator, which can only characterize the oscillator-upconverted 1/f3 noise, the additive phase noise characterization of the injection-locked oscillator is shown to provide the means to directly observe and characterize the input-referred intrinsic 1/f noise source of the oscillator negative resistance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference20 articles.

1. Analysis of noise upconversion in microwave FET oscillators;Siweris;IEEE Trans. Microw. Theory Technol.,1985

2. AC-coupling and 1/f Noise Effecs on Baseband OFDM Signals;Georgiadis;IEEE Trans. Commun.,2006

3. Calculation of the Performance of Communication Systems From Measured Oscillator Phase Noise;Khanzadi;IEEE Trans. Circuits Syst. I,2014

4. Phase noise in externally injection-locked oscillator arrays;Chang;IEEE Trans. Microw. Theory Technol.,1997

5. Injection locking of microwave solid-state oscillators;Kurokawa;Proc. IEEE,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3