Facile Green Preparation of Reduced Graphene Oxide Using Citrus Limetta-Decorated rGO/TiO2 Nanostructures for Glucose Sensing

Author:

Gijare Medha,Chaudhari Sharmila,Ekar Satish,Shaikh Shoyebmohamad F.ORCID,Mane Rajaram S.ORCID,Pandit BidhanORCID,Siddiqui Muhammad Usman Hassan,Garje Anil

Abstract

The important electrochemical measurements of reduced graphene oxide-titanium oxide (rGO)/TiO2) electrodes for the application of a glucose sensor are reported in the proposed work. Investigating the sensitivity, stability, and reproducibility of sensor electrodes that were made and used to evaluate the concentration of glucose in the serum is one of the novel aspects of this work. This study presents the use of citrus limetta (sweet lime) fruit peel waste to synthesize a green reduction of graphene oxide (rGO). The rGO/TiO2 composite obtained using the microwave heating method is applied for measuring the structural and morphological properties by various means. A conducting fluorine-tin oxide substrate is used to modify the enzymeless glucose sensor electrode. The electrochemical measurements of rGO/TiO2 sensor electrodes are carried out using the technique of cyclic voltammetry. The rGO/TiO2 sensor electrode exhibits a high sensitivity of 1425 µA/mM cm2 towards glucose concentration in the range of 0.1 to 12 mM. The sensor was found to be extremely stable and repeatable with a response time of 5 s along with a minimum detection limit of 0.32 μM of glucose. The rGO/TiO2 sensor shows relative standard deviation (RSD) of 1.14%, 1.34%, and 1.3% which reveals its excellent stability, repeatability, and reproducibility respectively. The sensor was used for glucose level detection in natural blood serum and shows an RSD of 1.88%. which is in good agreement with the commercial glucose sensor values.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3