Abstract
An attenuator supporting meander-line (ASML) slow wave structure (SWS) is proposed for a Ka-band traveling wave tube (TWT) and studied by simulations and experiments. The ASML SWS simplifies the fabrication and assembly process of traditional planar metal meander-lines (MLs) structures, by employing an attenuator to support the ML on the bottom of the enclosure rather than welding them together on the sides. To reduce the surface roughness of the molybdenum ML caused by laser cutting, the ML is coated by a thin copper film by magnetron sputtering. The measured S11 of the ML is below −20 dB and S21 varies around −8 dB to −12 dB without the attenuator, while below −40 dB with the attenuator. Particle-in-cell (PIC) simulation results show that with a 4.4-kV, 200-mA sheet electron beam, a maximum output power of 126 W is obtained at 38 GHz, corresponding to a gain of 24.1 dB and an electronic efficiency of 14.3%, respectively.
Funder
National Natural Science Foundation of China
Science and Technology on High Power Microwave Laboratory Fund
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献