AI-Aided Individual Emergency Detection System in Edge-Internet of Things Environments

Author:

Yang TaehunORCID,Lee Sang-HoonORCID,Park SoochangORCID

Abstract

Recently, many disasters have occurred in indoor places. In order to rescue or detect victims within disaster scenes, vital information regarding their existence and location is needed. To provide such information, some studies simply employ indoor positioning systems to identify each mobile device of victims. However, their schemes may be unreliable, since people sometimes drop their mobile devices or put them on a desk. In other words, their methods may find a mobile device, not a victim. To solve this problem, this paper proposes a novel individual monitoring system based on edge intelligence. The proposed system monitors coexisting states with a user and a smart mobile device through a user state detection mechanism, which could allow tracking through the monitoring of continuous user state switching. Then, a fine-grained localization scheme is employed to perceive the precise location of a user who is with a mobile device. Hence, the proposed system is developed as a proof-of-concept relying on off-the-shelf WiFi devices and reusing pervasive signals. The smart mobile devices of users interact with hierarchical edge computing resources to quickly and safely collect and manage sensing data of user behaviors with encryption by cipher-block chaining, and user behaviors are analyzed via the ensemble paradigm of three machine learning technologies. The proposed system shows 98.82% prevision for user activity recognition, and 96.5% accuracy for user localization accuracy is achieved.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3