Affiliation:
1. School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 100044, China
2. National Research Center of Railway Safety Assessment, Beijing Jiaotong University, Beijing 100044, China
3. Collaborative Innovation Center of Railway Traffic Safety, Beijing 100044, China
Abstract
Traffic command and scheduling are the core monitoring aspects of railway transportation. Detecting the fatigued state of dispatchers is, therefore, of great significance to ensure the safety of railway operations. In this paper, we present a multi-feature fatigue detection method based on key points of the human face and body posture. Considering unfavorable factors such as facial occlusion and angle changes that have limited single-feature fatigue state detection methods, we developed our model based on the fusion of body postures and facial features for better accuracy. Using facial key points and eye features, we calculate the percentage of eye closure that accounts for more than 80% of the time duration, as well as blinking and yawning frequency, and we analyze fatigue behaviors, such as yawning, a bowed head (that could indicate sleep state), and lying down on a table, using a behavior recognition algorithm. We fuse five facial features and behavioral postures to comprehensively determine the fatigue state of dispatchers. The results show that on the 300 W dataset, as well as a hand-crafted dataset, the inference time of the improved facial key point detection algorithm based on the retina–face model was 100 ms and that the normalized average error (NME) was 3.58. On our own dataset, the classification accuracy based the an Bi-LSTM-SVM adaptive enhancement algorithm model reached 97%. Video data of volunteers who carried out scheduling operations in the simulation laboratory were used for our experiments, and our multi-feature fusion fatigue detection algorithm showed an accuracy rate of 96.30% and a recall rate of 96.30% in fatigue classification, both of which were higher than those of existing single-feature detection methods. Our multi-feature fatigue detection method offers a potential solution for fatigue level classification in vital areas of the industry, such as in railway transportation.
Funder
Science and Technology Research and Development Plan Project of China National Railway Group Co., Ltd.
Fundamental Research Funds for the Central Universities
Science and Technology Research and Development Plan Project of China Academy of Railway Sciences Group Co., Ltd.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献