Modeling and Centralized-ZVS Control for Wireless Charging Electric Vehicles Supplied by Parallel Modular Multi-Inverters

Author:

Chen Jing12ORCID,Zhu Ao12,Zhang Zhengqing12,Yu Shuai12,Li Rui12,Zhang Weilong12,Cai Jiuqing12

Affiliation:

1. Hubei Key Laboratory of Marine Electromagnetic Detection and Control, Wuhan 430205, China

2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China

Abstract

In this paper, a parallel modular multi-inverter (PMMI) topology is proposed to supply high power for wireless charging electric vehicles (EVs). A major challenge in the implementation of PMMI topology is zero-voltage switching (ZVS) for all inverters to avoid high-frequency switching losses. Therefore, a centralized-ZVS control and master–slave frequency following (MSFF) strategy are presented to realize ZVS for all PMMIs by a single controller structure without extra controllers needed on the slave inverters. Meanwhile, a modeling method directly related to the ZVS angle and operating frequency for an arbitrary number of PMMIs is proposed and linearized to analyze the system dynamic characteristics at the operating point. Additionally, to obtain the desired dynamic performance, an optimal controller coefficient (OCC) configuration method is proposed for the design of controller parameters. Finally, a laboratory wireless power transfer (WPT) prototype supplied by three PMMIs is designed, built, and tested to verify the correctness of the theoretical analysis. Experimental results show that the ZVS angle of all PMMIs can maintain at the preset value with the desired settling time under designed the PI controller parameters. The measured whole system power transmission efficiency is 94.1% at a 10 Ω load.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3