Modelling, Investigation, and Feasibility of Stratospheric Broadband mm-Wave 5G and beyond Networks for Aviation

Author:

Albagory YasserORCID

Abstract

Recent advances in communication systems provide an enabling technology for aircraft connection and safety. A promising communication system that uses stratospheric platforms provides an efficient and improved communication performance and can be an efficient solution for establishing communication networks for aviation. Therefore, in this paper, a novel communication network based on stratospheric basestation (SB) is proposed to provide fifth-generation (5G) and beyond services for civil aviation aircrafts to improve global flight connectivity, control, and safety. The proposed aircraft–SB network is demonstrated, and its coverage geometry is modelled and investigated. As the 5G and beyond networks use millimeter wave frequency bands (mm-wave), the performance of different atmospheric losses including gaseous absorption, rain, and fog/cloud is analyzed to investigate the system’s practical feasibility at different 5G proposed frequencies ranging from 3.5 to 66 GHz through a flight model including three distinct stages which are takeoff/landing, climbing/descending, and cruise stages. Also, handover scenarios in the proposed aircraft–SB network are investigated and analyzed at the proposed 5G frequencies. In addition, the aircraft–SB 5G network is compared to the most recent low-Earth orbit (LEO) Internet satellites where the proposed system is expected to provide low latency, less atmospheric attenuation, longer aircraft–SB link duration, and very low handover rate.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of Side Lobe Reduction for Smart Antenna Systems Using Genetic Algorithms (GA);2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

2. Performance Analysis of Stratosphere Cellular Network Relying on Control- and User-Plane Separation;IEEE Transactions on Vehicular Technology;2022-10

3. Wireless Technology Contribution for Aviation Safety;Lecture Notes in Electrical Engineering;2022-09-14

4. Security in Digital Aeronautical Communications A Comprehensive Gap Analysis;International Journal of Critical Infrastructure Protection;2022-09

5. An Efficient Adaptive and Steep-Convergent Sidelobes Simultaneous Reduction Algorithm for Massive Linear Arrays;Electronics;2022-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3