Evaluation of Data Augmentation Techniques for Facial Expression Recognition Systems

Author:

Porcu SimoneORCID,Floris AlessandroORCID,Atzori LuigiORCID

Abstract

Most Facial Expression Recognition (FER) systems rely on machine learning approaches that require large databases for an effective training. As these are not easily available, a good solution is to augment the databases with appropriate data augmentation (DA) techniques, which are typically based on either geometric transformation or oversampling augmentations (e.g., generative adversarial networks (GANs)). However, it is not always easy to understand which DA technique may be more convenient for FER systems because most state-of-the-art experiments use different settings which makes the impact of DA techniques not comparable. To advance in this respect, in this paper, we evaluate and compare the impact of using well-established DA techniques on the emotion recognition accuracy of a FER system based on the well-known VGG16 convolutional neural network (CNN). In particular, we consider both geometric transformations and GAN to increase the amount of training images. We performed cross-database evaluations: training with the "augmented" KDEF database and testing with two different databases (CK+ and ExpW). The best results were obtained combining horizontal reflection, translation and GAN, bringing an accuracy increase of approximately 30%. This outperforms alternative approaches, except for the one technique that could however rely on a quite bigger database.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. Constants across cultures in the face and emotion.

2. Effects of cultural characteristics on building an emotion classifier through facial expression analysis;Flávio Altinier Maximiano da Silva;J. Electron. Imaging,2015

3. Deep Facial Expression Recognition: A Survey

4. Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order

5. The Karolinska Directed Emotional Faces: A validation study

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3