Abstract
A deep-learning based detector for M-ary phase position shift keying (MPPSK) systems is proposed in this paper. The major components of this detector include a special impact filter, a stacked denoising sparse autoencoder (DSAE), which was trained in unsupervised learning to extract features from the modulation signals, and a softmax classifier. The features learned by the stacked DSAE were then used to train the softmax classifier to demodulate the received signals into M classes. The architecture presented herein was trained and tested on a simple dataset extended by adding Gaussian noise only. The results from the theoretical analysis and simulation show that the detection performance of the proposed scheme is superior to that of existing detectors.
Funder
the Open Grant of State Key Laboratory of MillimeterWaves, China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献