A Study on Performance Metrics for Anomaly Detection Based on Industrial Control System Operation Data

Author:

Kim Ga-Yeong,Lim Su-MinORCID,Euom Ieck-Chae

Abstract

Recently, OT (operational technology) networks of industrial control systems have been combined with IT networks. Therefore, OT networks have inherited the vulnerabilities and attack paths existing in IT networks. Consequently, attacks on industrial control systems are increasing, and research on technologies combined with artificial intelligence for detecting attacks is active. Current research focuses on detecting attacks and improving the detection accuracy. Few studies exist on metrics that interpret anomaly detection results. Different analysis metrics are required depending on the characteristics of the industrial control system data used for anomaly detection and the type of attack they contain. We focused on the fact that industrial control system data are time series data. The accuracy and F1-score are used as metrics for interpreting anomaly detection results. However, these metrics are not suitable for evaluating anomaly detection in time series data. Because it is not possible to accurately determine the start and end of an attack, range-based performance metrics must be used. Therefore, in this study, when evaluating anomaly detection performed on time series data, we propose a range-based performance metric with an improved algorithm. The previously studied range-based performance metric time-series aware precision and recall (TaPR) evaluated all attacks equally. In this study, improved performance metrics were studied by deriving ambiguous instances according to the characteristics of each attack and redefining the algorithm of the TaPR metric. This study provides accurate assessments when performing anomaly detection on time series data and allows predictions to be evaluated based on the characteristics of the attack.

Funder

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Evolution of ICS Attacks and the Prospects for Future Disruptive Events, Internet Publicationhttps://www.dragos.com/wp-content/uploads/Evolution-of-ICS-Attacks-and-the-Prospects-for-Future-Disruptive-Events-Joseph-Slowik-1.pdf

2. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey;Hongyu;Appl. Sci.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3