Research on Stability Control Method of Electro-Mechanical Actuator under the Influence of Lateral Force

Author:

Wu Shuai,Zhou Yong,Zhang Jianxin,Ma Shangjun,Lian Yunxiao

Abstract

This paper takes a multi-stage Electro-mechanical Actuator (EMA) as the research object, analyzes the lateral force of the multi-stage EMA in the vertical state, and the overall mathematical model of the multi-stage EMA system. Firstly, a permanent magnet synchronous motor module is built in JMAG according to the engineering requirements. Then, the electrical control part and mechanical transmission part of the multi-stage EMA are established in AMESim, and the ideal motor module in AMESim is replaced with the motor model designed by JMAG to construct the overall model of the multi-stage EMA. The dynamic simulation model of lateral force is established in ADAMS to accurately simulate the impact of wind load on EMA in the actual environment, and this model is introduced into AMESim instead of the lead screw and nut module in AMESim. The improved active disturbance rejection control (ADRC) is used to replace the speed loop and positional loop in the traditional three closed-loop control, and the whole system stability servo control of multi-stage EMA is co-simulated. Finally, the experiment of the designed control method is carried out by LabVIEW. The result of the experiment shows that the multi-stage EMA system can effectively suppress the lateral force under the active disturbance rejection control and ensure the stable operation of the multi-stage EMA system. In addition, the system built by the co-simulation method is closer to real working conditions than the traditional mathematical model. The control parameters in the simulation can be effectively transplanted to the actual system with only minor adjustment to meet the engineering requirements.

Funder

Key R & D projects in Shaanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference25 articles.

1. Research on optimal time trajectory planning of large missile erection process;Tian;Comput. Simul.,2012

2. Research on rapid erection system based on accumulator auxiliary power source;Zhang;J. Beijing Inst. Technol.,2018

3. Design and research of load simulation system for erecting device of missile launching vehicle;Wang;Mach. Build. Autom.,2019

4. Real-Time Dynamic Control of a Stewart Platform

5. Adaptive sliding mode control for missile guidance law

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3