A Risk Curtailment Strategy for Solar PV-Battery Integrated Competitive Power System

Author:

Das Arup,Dawn SubhojitORCID,Gope SadhanORCID,Ustun Taha SelimORCID

Abstract

Power system networks are becoming more complex and decentralized with the foreword of deregulation in the global power sector. In this scenario, an independent system operator (ISO) is responsible for determining the appropriate actions to deliver stable and quality power to the customers connected to the network at the lowest cost without violating the system security limits. Violations of any security limit may result in system risk. The unstable and non-reliable system always has some drawbacks and is not desirable from the consumer’s point of view. A deregulated power market always keeps the consumer on the advantage side by giving stable, reliable, and less costly power. By using risk assessment tools, we identify the fault conditions and we try to minimize the risk by various uses of sequential programming methods. In this paper, a novel power system risk analysis and congestion management approach are introduced with considering meta-heuristic algorithms i.e., Slime Mould Algorithm (SMA) and Artificial Bee Colony Algorithm (ABC) in renewable energy integrated electricity market. The proposed power system risk analysis is constructed with the help of two risk valuation tools named Conditional-Value-at-risk (CVaR) and Value-at-risk (VaR). The higher negative value of VaR and CVaR represents the higher risk system and lower negative value or towards a positive value of VaR and CVaR denotes the less risk or stable system. The projected method has been experienced on the IEEE 14-bus test system and IEEE 30-bus test system to examine the usefulness of the meta-heuristic algorithm in system risk analysis under the deregulated environment. The importance of renewable energy integration in system risk curtailment has also been depicted in this work: basically, to measure the system’s risk, hence enhancing the system’s reliability and societal welfare. As a result, it will benefit both supply and demand-side participants.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3