Provably Secure PUF-Based Lightweight Mutual Authentication Scheme for Wireless Body Area Networks

Author:

Lee SangCheol,Kim SuHwan,Yu SungJinORCID,Jho NamSu,Park YoHanORCID

Abstract

Wireless body area networks (WBANs) are used in modern medical service environments for the convenience of patients and medical professionals. Owing to the recent COVID-19 pandemic and an aging society, WBANs are attracting attention. In a WBAN environment, the patient has a sensor node attached to him/her that collects patient status information, such as blood pressure, blood glucose, and pulse; this information is simultaneously transmitted to his/her respective medical professional through a gateway. The medical professional receives and checks the patient’s status information and provides a diagnosis. However, sensitive information, including the patient’s personal and status data, are transmitted via a public channel, causing security concerns. If an adversary intercepts this information, it could threaten the patient’s well-being. Therefore, a secure authentication scheme is essential for WBAN environments. Recently, Chen et al. proposed a two-factor authentication scheme for WBANs. However, we found out Chen et al.’s scheme is vulnerable to a privileged insider, physical cloning, verification leakage, impersonation, and session key disclosure attacks. We also propose a secure physical-unclonable-function (PUF)-based lightweight mutual authentication scheme for WBANs. Through informal security analysis, we demonstrate that the proposed scheme using biometrics and the PUF is safe against various security attacks. In addition, we verify the security features of our scheme through formal security analyses using Burrows–Abadi–Needham (BAN) logic, the real-or-random (RoR) model, and the Automated Validation of Internet Security Protocols and Applications (AVISPA). Furthermore, we evaluate the security features, communication costs, and computational costs of our proposed scheme and compare them with those of other related schemes. Consequently, our scheme is more suitable for WBAN environments than the other related schemes.

Funder

Korean Government under Electronics and Telecommunications Research Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3