Circuit Model and Analysis of Molded Case Circuit Breaker Interruption Phenomenon

Author:

Lee Kun-A,Cho Young-Maan,Lee Ho-JoonORCID

Abstract

There are complex physical phenomena for the interpretation of a molded case circuit breaker (MCCB) in a distribution system. Most of the studies of MCCB interruption phenomena were conducted with numerical analysis and experiments. This traditional approach may help improve the performance of the MCCB itself, but it is difficult to find connectivity with other systems. In this paper, the circuit model is proposed and the interruption phenomenon of MCCB is analyzed. The interruption of the MCCB is divided into three sections to deal with physical phenomena occurring in each area. A simplified model is proposed considering the characteristics of each section. Based on this model, the circuit model is proposed. To implement the features of each section, the calculation of physical phenomena is carried out, and this is expressed in the circuit model with resistance and zener diode. Comparing the results of the simulation with the experimental results is as follows. For 7-plates (basic state), the error rate is −5.6% in section II and 16.8% in section III. For 1-plate, the error rate is 36.5% in section II and −17.0% in section III. This case shows much difference from the simplified model in this paper, resulting in the largest error rate. The 7-plates and 5-plates cases, which are available in the general MCCB owing to the shortest distance from the arc, represent a relatively small error rate. Using the proposed circuit model, it is expected that the entire system, including the interruption phenomenon, can be interpreted as a single circuit model.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interval Sensitivity Analysis and Optimization of Magneto-Rheological Damper with Energy Harvesting Characteristics;Journal of Vibration Engineering & Technologies;2024-07-04

2. Two-Level Excitation Current Driver to Reduce the Driving Power of an Electromagnetic Contactor;Electronics;2024-02-28

3. Arc Absorption Options Based on Passive Components in DC Circuit Breakers;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

4. Plasma Absorption Techniques in Direct Current Circuit Breakers;2023 IEEE 3rd International Conference on Industrial Electronics for Sustainable Energy Systems (IESES);2023-07-26

5. Multiline Fault Current Limiter for DC Line Fault in Multi‐terminal DC Grids;IEEJ Transactions on Electrical and Electronic Engineering;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3