Pothole Detection Using Image Enhancement GAN and Object Detection Network

Author:

Salaudeen HabeebORCID,Çelebi Erbuğ

Abstract

Many datasets used to train artificial intelligence systems to recognize potholes, such as the challenging sequences for autonomous driving (CCSAD) and the Pacific Northwest road (PNW) datasets, do not produce satisfactory results. This is due to the fact that these datasets present complex but realistic scenarios of pothole detection tasks than popularly used datasets that achieve better results but do not effectively represents realistic pothole detection task. In remote sensing, super-resolution generative adversarial networks (GAN), such as enhanced super-resolution generative adversarial networks (ESRGAN), have been employed to mitigate the issues of small-object detection, which has shown remarkable performance in detecting small objects from low-quality images. Inspired by this success in remote sensing, we apply similar techniques with an ESRGAN super-resolution network to improve the image quality of road surfaces, and we use different object detection networks in the same pipeline to detect instances of potholes in the images. The architecture we propose consists of two main components: ESRGAN and a detection network. For the detection network, we employ both you only look once (YOLOv5) and EfficientDet networks. Comprehensive experiments on different pothole detection datasets show better performance for our method compared to similar state-of-the-art methods for pothole detection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3