A PTM-Based Framework for Enhanced User Requirement Classification in Product Design

Author:

Zhang Zhiwei1,Dou Yajie1,Xu Xiangqian1ORCID,Tan Yuejin1

Affiliation:

1. College of Systems Engineering, National University of Defense Technology, Changsha 437100, China

Abstract

Accurately identifying and classifying customer requirements is crucial for successful product design. However, traditional methods for requirement classification, such as Kano models based on questionnaires, can be time-consuming and may not capture all requirements accurately. Analyzing large volumes of user reviews using simple natural language processing techniques can also result in accuracy issues. To address these challenges, we propose a framework that combines pre-trained models (PTMs), Kano models, and the sentiment analysis technique. Our approach integrates an LDA-K-Means model enhanced by PTM ERNIE for pinpointing product feature topics within user reviews. Then, a sentiment analysis is performed using the fine-tuned PTM SKEP to assess user satisfaction with features. Finally, the Kano model is applied to perform requirement classification. We evaluate our framework quantitatively, demonstrating its superior performance compared to the baseline models. Our sentiment analysis model also outperforms the other baseline models. Moreover, a case study on smartphones illustrates the effectiveness of our framework. This research results suggest that leveraging a suitable PTM can better address the problem of requirement classification in user review analyses, leading to improved product design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3