Applying Swin Architecture to Diverse Sign Language Datasets

Author:

Kumar Yulia1ORCID,Huang Kuan1ORCID,Lin Chin-Chien1,Watson Annaliese1,Li J. Jenny1,Morreale Patricia1ORCID,Delgado Justin1

Affiliation:

1. Department of Computer Science and Technology, Kean University, Union, NJ 07083, USA

Abstract

In an era where artificial intelligence (AI) bridges crucial communication gaps, this study extends AI’s utility to American and Taiwan Sign Language (ASL and TSL) communities through advanced models like the hierarchical vision transformer with shifted windows (Swin). This research evaluates Swin’s adaptability across sign languages, aiming for a universal platform for the unvoiced. Utilizing deep learning and transformer technologies, it has developed prototypes for ASL-to-English translation, supported by an educational framework to facilitate learning and comprehension, with the intention to include more languages in the future. This study highlights the efficacy of the Swin model, along with other models such as the vision transformer with deformable attention (DAT), ResNet-50, and VGG-16, in ASL recognition. The Swin model’s accuracy across various datasets underscore its potential. Additionally, this research explores the challenges of balancing accuracy with the need for real-time, portable language recognition capabilities and introduces the use of cutting-edge transformer models like Swin, DAT, and video Swin transformers for diverse datasets in sign language recognition. This study explores the integration of multimodality and large language models (LLMs) to promote global inclusivity. Future efforts will focus on enhancing these models and expanding their linguistic reach, with an emphasis on real-time translation applications and educational frameworks. These achievements not only advance the technology of sign language recognition but also provide more effective communication tools for the deaf and hard-of-hearing community.

Funder

NSF

Publisher

MDPI AG

Reference59 articles.

1. (2024, February 24). Home Page of the NAD. Available online: https://www.nad.org/resources/american-sign-language/learning-american-sign-language/.

2. (2024, February 24). Home Page of the NAD Youth. Available online: https://youth.nad.org/.

3. (2024, February 24). GitHub Repository of Swin Transformer. Available online: https://github.com/microsoft/Swin-Transformer.

4. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021, January 11–17). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada.

5. (2024, February 24). GitHub Repository of DAT Transformer. Available online: https://github.com/LeapLabTHU/DAT.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3