Abstract
Path delay variation becomes a serious concern in advanced technology, especially for multi-corner conditions. Plenty of timing analysis methods have been proposed to solve the issue of path delay variation, but they mainly focus on every single corner and are based on a characterized timing library, which neglects the correlation among multiple corners, resulting in a high characterization effort for all required corners. Here, a novel prediction framework is proposed for path delay variation by employing a learning-based method using back propagation (BP) regression. It can be used to solve the issue of path delay variation prediction under a single corner. Moreover, for multi-corner conditions, the proposed framework can be further expanded to predict corners that are not included in the training set. Experimental results show that the proposed model outperforms the traditional Advanced On-Chip Variation (AOCV) method with 1.4X improvement for the prediction of path delay variation for single corners. Additionally, while predicting new corners, the maximum error is 4.59%, which is less than current state-of-the-art works.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. GNN4REL: Graph Neural Networks for Predicting Circuit Reliability Degradation;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2022-11
2. Modeling Multiple-Input Switching in Timing Analysis Using Machine Learning;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021-04