Author:
Xu Qiwei,Huang Hong,Zhou Chuan,Zhang Xuefeng
Abstract
Currently, infrared fault diagnosis mainly relies on manual inspection and low detection efficiency. This paper proposes an improved YOLOv3 network for detecting the working state of substation high-voltage lead connectors. Firstly, dilated convolution is introduced into the YOLOv3 backbone network to process low-resolution element layers, so as to enhance the network’s extraction of image features, promote function propagation and reuse, and improve the network’s recognition performance of small targets. Then the fault detection model of the infrared image of the high voltage lead connector is created and the optimal infrared image test data set is obtained through multi-scale training. Finally, the performance of the improved network model is tested on the data set. The test results show that the improved YOLOv3 network model has an average detection accuracy of 84.26% for infrared image faults of high-voltage lead connectors, which is 4.58% higher than the original YOLOv3 network model. The improved YOLOv3 network model has an average detection time of 0.308 s for infrared image faults of high-voltage lead connectors, which can be used for real-time detection in substations.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference23 articles.
1. Review on applications of artificial intelligence driven data analysis technology in condition based maintenance of power transformers;Liu;High Volt. Eng.,2019
2. Research on automatic location and recognition of insulators in substation based on YOLOv3
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献