Evolutionary Optimization Strategy for Indoor Position Estimation Using Smartphones

Author:

Grottke JanORCID,Blankenbach JörgORCID

Abstract

Due to their distinctive presence in everyday life and the variety of available built-in sensors, smartphones have become the focus of recent indoor localization research. Hence, this paper describes a novel smartphone-based sensor fusion algorithm. It combines the relative inertial measurement unit (IMU) based movements of the pedestrian dead reckoning with the absolute fingerprinting-based position estimations of Wireless Local Area Network (WLAN), Bluetooth (Bluetooth Low Energy—BLE), and magnetic field anomalies as well as a building model in real time. Thus, a step-based position estimation without knowledge of any start position was achieved. For this, a grid-based particle filter and a Bayesian filter approach were combined. Furthermore, various optimization methods were compared to weigh the different information sources within the sensor fusion algorithm, thus achieving high position accuracy. Although a particle filter was used, no particles move due to a novel grid-based particle interpretation. Here, the particles’ probability values change with every new information source and every stepwise iteration via a probability-map-based approach. By adjusting the weights of the individual measurement methods compared to a knowledge-based reference, the mean and the maximum position error were reduced by 31%, the RMSE by 34%, and the 95-percentile positioning errors by 52%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference97 articles.

1. Indoor-Positionierung & lokale Positionierungssysteme;Blankenbach,2017

2. Pedestrian Localisation inside buildings based on multi-sensor smartphones

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization Techniques in the Localization Problem: A Survey on Recent Advances;Machines;2024-08-19

2. Particle filtering supported probability density estimation of mobility patterns;Heliyon;2024-04

3. Optimal Beacon Placement for Indoor Positioning Using Constraint Programming;2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA);2022-12

4. An Extended Approach for Infrastructure-less Grid-based Smartphone Positioning;2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN);2022-09-05

5. Carrier Phase Positioning Using 5G NR Signals Based on OFDM System;2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall);2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3