Abstract
In this paper, we propose a deep residual dense network (DRDN) for single image super- resolution. Based on human perceptual characteristics, the residual in residual dense block strategy (RRDB) is exploited to implement various depths in network architectures. The proposed model exhibits a simple sequential structure comprising residual and dense blocks with skip connections. It improves the stability and computational complexity of the network, as well as the perceptual quality. We adopt a perceptual metric to learn and assess the quality of the reconstructed images. The proposed model is trained with the Diverse2k dataset, and the performance is evaluated using standard datasets. The experimental results confirm that the proposed model exhibits superior performance, with better reconstruction results and perceptual quality than conventional methods.
Funder
Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献