GaN and SiC Device Characterization by a Dedicated Embedded Measurement System

Author:

Vella Alberto1,Galioto Giuseppe1,Vitale Gianpaolo2ORCID,Lullo Giuseppe1ORCID,Giaconia Giuseppe Costantino1ORCID

Affiliation:

1. Department of Engineering, University of Palermo, Viale delle Scienze, Building 9, 90128 Palermo, Italy

2. National Research Council of Italy ICAR, Institute for High Performance Computing and Networking, Via Ugo La Malfa 153, 90146 Palermo, Italy

Abstract

This work proposes a comparison among GaN and SiC device main parameters measured with a dedicated and low-cost embedded system, employing an STM32 microcontroller designed to the purpose. The system has the advantage to avoid the use of expensive laboratory measurement equipment to test the devices, allowing to obtain their behavior in operating conditions. The following KPIs (Key Performance Indicators) are measured and critically compared: threshold voltage, on-resistance and input capacitance. All the measurements are carried out in a short time interval and on a wide range of switching frequencies, ranging from 10 kHz to 1 MHz. This investigation is focused on the deviation of the figures of merit when the switching frequency changes, since it is crucial for wide-bandgap devices. The devised, low-cost, microcontroller unit allows high flexibility and system portability, while the employed equivalent-time sampling technique overcomes some issues related to the need of high sampling frequency. It allows good performances with common microcontroller embedded AD converters. To validate the proposed system, the obtained results have been compared with the time-domain waveforms acquired with a traditional laboratory oscilloscope and a study of the system’s measurement errors has been carried out. Results show that GaN devices achieve a higher efficiency with respect to SiC devices in the considered range of switching frequencies. The on-resistance exhibited by GaN devices shows, as expected, an increase with frequency, which happens to switching losses, too. On the other hand, GaN devices are more sensitive to parasitic effects and the high dV/dt, due to the reduced switching times, can excite unwanted ringing phenomena.

Funder

Electronic Component Systems for European Leadership Joint Undertaking

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3