Using Phase-Sensitive Optical Time Domain Reflectometers to Develop an Alignment-Free End-to-End Multitarget Recognition Model

Author:

Yang Nachuan12ORCID,Zhao Yongjun1,Wang Fuqiang2,Chen Jinyang3

Affiliation:

1. Data and Target Engineering Institute, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China

2. Zhengzhou Xinda Institute of Advanced Technology, Zhengzhou 450001, China

3. Research Institute for National Defense Engineering of Academy of Military Science PLA, Luoyang 471023, China

Abstract

This pattern recognition method can effectively identify vibration signals collected by a phase-sensitive optical time-domain reflectometer (Φ-OTDR) and improve the accuracy of alarms. An alignment-free end-to-end multi-vibration event detection method based on Φ-OTDR is proposed, effectively detecting different vibration events in different frequency bands. The pulse accumulation and pulse cancellers determine the location of vibration events. The local differential detection method demodulates the vibration event time-domain variation signals. After the extraction of the signal time-frequency features by sliding window, the convolution neural network (CNN) further extracts the signal features. It analyzes the temporal relationship of each group of signal features using a bidirectional long short-term memory network (Bi-LSTM). Finally, the connectionist temporal classification (CTC) is used to label the unsegmented sequence data to achieve single detection of multiple vibration targets. Experiments show that using this method to process the collected 8563 data, containing 5 different frequency bands of multi-vibration acoustic sensing signal, the system F1 score is 99.49% with a single detection time of 2.2 ms. The highest frequency response is 1 kHz. It is available to quickly and efficiently identify multiple vibration signals when a single demodulated acoustic sensing signal contains multiple vibration events.

Funder

China Postdoctoral Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3