Impact of In-Air Gestures on In-Car Task’s Diver Distraction

Author:

Cui Chengyong1ORCID,Shen Guojiang1ORCID,Wang Yu1,Xu Yile2,Du Hao3,Zhang Wenyi1,Kong Xiangjie1ORCID

Affiliation:

1. College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China

2. Computer Science and Interdisciplinary Studies, College of William and Mary, Williamsburg, VA 23186, USA

3. Key Laboratory of Public Security Information Application Based on Big-Data Architecture, Ministry of Public Security, Zhejiang Police College, Hangzhou 310053, China

Abstract

As in-vehicle information systems (IVIS) grow increasingly complex, the demand for innovative artificial intelligence-based interaction methods that enhance cybersecurity becomes more crucial. In-air gestures offer a promising solution due to their intuitiveness and individual uniqueness, potentially improving security in human–computer interactions. However, the impact of in-air gestures on driver distraction during in-vehicle tasks and the scarcity of skeleton-based in-air gesture recognition methods in IVIS remain largely unexplored. To address these challenges, we developed a skeleton-based framework specifically tailored for IVIS that recognizes in-air gestures, classifying them as static or dynamic. Our gesture model, tested on the large-scale AUTSL dataset, demonstrates accuracy comparable to state-of-the-art methods and increased efficiency on mobile devices. In comparative experiments between in-air gestures and touch interactions within a driving simulation environment, we established an evaluation system to assess the driver’s attention level during driving. Our findings indicate that in-air gestures provide a more efficient and less distracting interaction solution for IVIS in multi-goal driving environments, significantly improving driving performance by 65%. The proposed framework can serve as a valuable tool for designing future in-air gesture-based interfaces for IVIS, contributing to enhanced cybersecurity.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing Cybersecurity Issues in ERP Systems – Emerging Trends;Proceedings of the International Conference on Business Excellence;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3